Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cengiz Arıcı, ${ }^{\text {a }}$ * Dinçer Ülkü, ${ }^{\text {a }}$

 Cumhur Kırılmıs, ${ }^{\text {b }}$ Murat Koca ${ }^{\text {b }}$ and Misir Ahmedzade ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Engineering Physics, Hacettepe University, Beytepe 06800, Ankara, Turkey, and
${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Science, Fırat University, 23169 Elazıg, Turkey

Correspondence e-mail: arici@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.058$
$w R$ factor $=0.154$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(1-Benzofuran-2-yl)-2-mesitylethanone

The benzofuran ring system in the title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$, is planar and is linked to the mesityl group via an acetyl group. In the crystal structure, symmetry-related molecules are connected to form chains by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Comment

Benzofuran derivatives are nowadays an important class of organic compounds that occur in a great number of natural products. They are used in cosmetics and as synthetic pharmaceuticals (Bogdal \& Warzala, 2000). Moreover, benzofurans are building blocks for optical brighteners and are applied, for example, in combination with benzimidazoles as biphenyl end groups (Schmidt, 1999). Many of the natural benzofurans have physiological, pharmacological and toxic properties, and, as a result, there is continuing interest in their chemical synthesis (Kappe et al., 1997).

The benzofuran ring system in the title compound, (2), is planar, with a maximum deviation from the plane of 0.0257 (3) A for C8 (Fig. 1). The acetyl group is slightly twisted about the $\mathrm{C} 8-\mathrm{C} 9$ bond, as seen from the torsion angles $\mathrm{O} 1-$ $\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2=1.7(3)^{\circ}$ and $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10=0.6(3)^{\circ}$. The mesityl group is also planar and the dihedral angle between the benzofuran ring system and the mesityl group is $89.08(4)^{\circ}$.

The structure is stabilized by van der Waals interactions and symmetry-related molecules are linked to form chains via C $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2).

Experimental

A mixture of 1-chloro-3-mesitylacetone, (1) ($5 \mathrm{~g}, 23.73 \mathrm{mmol}$), 2hydroxybenzaldehyde $(2.93 \mathrm{~g}, 24 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.91 \mathrm{~g}$,

An ORTEP-3 (Farrugia, 1997) drawing of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

Received 5 April 2004

 Accepted 26 April 2004 Online 8 May 200435.59 mmol) in 200 ml absolute acetone was refluxed for 5 h . After cooling, 1-(1-benzofuran-2-yl)-2-mesitylethanone, (2) ($5.8 \mathrm{~g}, 87.8 \%$) was filtered off, washed with water, dried and recrystallized from aqueous ethanol (95%) to yield colourless crystals.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=278.33$
Monoclinic, $P 2_{1} / c$
$a=8.133(5) \AA$
$b=15.762$ (5) \AA
$c=11.752$ (5) \AA
$\beta=95.231$ (5) ${ }^{\circ}$
$V=1500.2(12) \AA^{3}$
$Z=4$
$D_{x}=1.232 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=2.6-25.7^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
$R_{\text {int }}=0.034$
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (MolEN; Fair, 1990)
$T_{\text {min }}=0.973, T_{\text {max }}=0.980$
2570 measured reflections
2467 independent reflections
1330 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.154$
$S=1.02$
2467 reflections
191 parameters
H -atom parameters constrained
$\theta_{\text {max }}=25.7^{\circ}$
$h=-9 \rightarrow 9$
$k=-19 \rightarrow 0$
$l=-14 \rightarrow 0$
3 standard reflections frequency: 120 min intensity decay: 0.7%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0891 P)^{2}\right. \\
& +0.3519 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.012 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{O} 1$	$1.379(4)$	$\mathrm{C} 9-\mathrm{O} 2$	$1.210(4)$
$\mathrm{C} 8-\mathrm{O} 1$	$1.389(4)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.9(3)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	$121.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$110.4(3)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	$122.7(3)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$116.0(3)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 8$	$105.9(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$	0.93	2.52	$3.432(5)$	165

Symmetry code: (i) $-x,-y, 2-z$.

A packing diagram of the crystal structure. The dashed lines indicate hydrogen bonds.

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ in the range $0.93-0.97 \AA$. They were refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

Bogdal, D. \& Warzala, M. (2000). Tetrahedron, 56, 8769-8773.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany,
Kappe, C., Murphree, S. \& Padwa, A. (1997). Tetrahedron, 53, 14179-14233.
Schmidt, E. (1999). In Ullmann's Encyclopedia, 6th ed. (Electronic Release). Optical Brighteners. Weinheim: Wiley-VCH.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. University of Utrecht, The Netherlands.

